Symmetric Linearizations for Matrix Polynomials
نویسندگان
چکیده
A standard way of treating the polynomial eigenvalue problem P (λ)x = 0 is to convert it into an equivalent matrix pencil—a process known as linearization. Two vector spaces of pencils L1(P ) and L2(P ), and their intersection DL(P ), have recently been defined and studied by Mackey, Mackey, Mehl, and Mehrmann. The aim of our work is to gain new insight into these spaces and the extent to which their constituent pencils inherit structure from P . For arbitrary polynomials we show that every pencil in DL(P ) is block symmetric and we obtain a convenient basis for DL(P ) built from block Hankel matrices. This basis is then exploited to prove that the first deg(P ) pencils in a sequence constructed by Lancaster in the 1960s generate DL(P ). When P is symmetric, we show that the symmetric pencils in L1(P ) comprise DL(P ), while for Hermitian P the Hermitian pencils in L1(P ) form a proper subset of DL(P ) that we explicitly characterize. Almost all pencils in each of these subsets are shown to be linearizations. In addition to obtaining new results, this work provides a self-contained treatment of some of the key properties of DL(P ) together with some new, more concise proofs.
منابع مشابه
On backward errors of structured polynomial eigenproblems solved by structure preserving linearizations
First, we derive explicit computable expressions of structured backward errors of approximate eigenelements of structured matrix polynomials including symmetric, skew-symmetric, Hermitian, skew-Hermitian, even and odd polynomials. We also determine minimal structured perturbations for which approximate eigenelements are exact eigenelements of the perturbed polynomials. Next, we analyze the effe...
متن کاملLarge Vector Spaces of Block-symmetric Strong Linearizations of Matrix Polynomials
M. I. BUENO∗, F. M. DOPICO †, S. FURTADO ‡, AND M. RYCHNOVSKY § Abstract. Given a matrix polynomial P (λ) = Pk i=0 λ Ai of degree k, where Ai are n × n matrices with entries in a field F, the development of linearizations of P (λ) that preserve whatever structure P (λ) might posses has been a very active area of research in the last decade. Most of the structure-preserving linearizations of P (...
متن کاملSkew-Symmetric Matrix Polynomials and their Smith Forms
Two canonical forms for skew-symmetric matrix polynomials over arbitrary fields are characterized — the Smith form, and its skew-symmetric variant obtained via unimodular congruences. Applications include the analysis of the eigenvalue and elementary divisor structure of products of two skew-symmetric matrices, the derivation of a Smith-McMillan-like canonical form for skew-symmetric rational m...
متن کاملStructured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems
We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...
متن کاملLinearizations of Hermitian Matrix Polynomials Preserving the Sign Characteristic
The development of strong linearizations preserving whatever structure a matrix polynomial might possess has been a very active area of research in the last years, since such linearizations are the starting point of numerical algorithms for computing eigenvalues of structured matrix polynomials with the properties imposed by the considered structure. In this context, Hermitian matrix polynomial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 29 شماره
صفحات -
تاریخ انتشار 2006